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Abstract

In this paper, the recognition of pollen bearing honey

bees from videos of the entrance of the hive is presented.

This computer vision task is a key component for the au-

tomatic monitoring of honeybees in order to obtain large

scale data of their foraging behavior and task specializa-

tion. Several approaches are considered for this task, in-

cluding baseline classifiers, shallow Convolutional Neural

Networks, and deeper networks from the literature. The ex-

perimental comparison is based on a new dataset of im-

ages of honeybees that was manually annotated for the pres-

ence of pollen. The proposed approach, based on Convolu-

tional Neural Networks is shown to outperform the other

approaches in terms of accuracy. Detailed analysis of the

results and the influence of the architectural parameters,

such as the impact of dedicated color based data augmen-

tation, provide insights into how to apply the approach to

the target application.

1. Introduction

Bees play essential role in pollination, which is crucial

for agriculture and ultimately for human existence. They

also behave in very complex social way that includes hier-

archy, roles, schedules and interactions. In order to under-

stand these behaviors, very careful observation and regis-

tering needs to be done. With the use of recent technology

developments, this observation is not only feasible, but pos-

sibly even broader, making easier to find and register de-

tailed individual and group conducts.

The interest on observation of honey bees activities

within and outside the colony began to be documented since

nearly a century ago [17]. For the most part, the traditional

technique remains human observation and manual annota-

tion, as this is the only approach that enables the extrac-

tion of a wide range of behaviors and is readily available

to bee specialists. It is a very time consuming and expen-

sive task that requires long periods of observation and some-

times specific expertise in order to be meaningful. Thus, im-

portant insights may still missing to be observed or demon-

strated due to lack of data. Computer vision and machine

learning techniques provide the framework needed to an-

alyze the insects behavior automatically and provide new

insights [3].

The observation of Honey Bee hives is of interest for

multiple applications. Bee keepers, for instance, might

get better understanding to prevent sickness in the colony

caused by external factors that can be recognizable in video

[19]. Early detection of poisonous materials that bees are

bringing as fraudulent pollen [6] or diagnosing the health of

the hive [8]. Furthermore, biologists can understand better

the pollen scheduling and individual roles within the hive,

which can be linked to DNA individual composition.

Concept recognition from images have been a matter of

very fast and growing performance in the last decade. Sev-

eral methods have been proven to be effective at this task.

In particular, Convolutional Neural Networks (CNN) [15]

have been shown to learn both low-level and higher-level

features without requiring explicit supervision.

In this work we present a study and comparison of dif-

ferent techniques for detection of pollen in video. Classi-

fiers such as KNN, SVM and Naive Bayes were used as

baseline. Convolutional Neural Networks were tested us-

ing different parameter configuration: shallow models of





Figure 2. Video capture system used in the field: overview of the

system installed at the entrance of the colony and detail on the en-

trance. (1) bee hive, (2) camera, (3) entrance ramp, (4) protection

against direct sunlight.

3.1. Video capture system

The video capture system is designed to observe the

ramp through which all foraging bees must pass to exit or

enter the colony. Figure 2 shows the system used in this

work. We used a 4 Mpixels GESS IP camera connected to

a networked video recorder configured at 8Mbps for con-

tinuous recording. A transparent acrylic plastic cover lo-

cated on top of the ramp enforces that the bees remain in

the focal plane of the camera. Due to constraints to avoid

interfering with the bee biological cycles, only natural light

is used. A white plastic diffuses the natural light received,

and a black mask is put around the camera to reduce the

direct reflections that could be visible on the ramp cover.

The videos where acquired in June 2017 at the UPR Agri-

cultural Experimental Station of Gurabo, Puerto Rico. The

two videos used in this work are of one hour duration and

were recorded at 10 a.m. and 1 p.m. to take into account

different lightings.

3.2. Dataset

As part of the contributions of this work an anno-

tated dataset has been released for public access (https:

//github.com/piperod/PollenDataset). This

dataset contains high resolution images of pollen-bearing

and non pollen-bearing honeybees as shown in Figure 4.

These images were extracted from the videos captured us-

ing the procedure described below.

Using in-house annotation system based on [20], the

videos were manually annotated using a protocol defined

to avoid near-duplicate samples and ensure a balanced and

representative dataset. For each video of one hour, the video

was visualized in chronological order and the annotator in-

structed to stop as soon as a pollen bee was entering the

ramp. The annotation would then be performed as the bee

reached the middle of the path leading to the entrance. A

second bee without pollen would be annotated on the same

frame to account for similar lighting conditions and ensure

Figure 3. Misaligned samples for Pollen and Non Pollen bearing

bees.

a balanced dataset. Since the ramp contains dozens of non

pollen-bearing bee at all times, this could be done with-

out repeating the same individual in a similar position. The

pollen bee would not be annotated again in its trip toward

the colony to avoid duplicates. The annotation consists in

the position of the bee’s thorax, its orientation angle, and

the presence of pollen, as illustrated in Figure 1, where part

of the annotation system is visible.

The dataset used for the recognition was created by ex-

tracting the individual images of the bees, with their re-

spective pollen/nopollen labels. The orientation of the bees

was compensated to ensure in all image samples that the

bee is facing upwards. With this information, the image

dataset was built fixing the size of the cropping rectangle

to 180×300 pixels, such that the annotated thorax position

appears centered at coordinates (90,100) and that the bee is

fully visible.

It can be noted that the orientation could be inferred au-

tomatically by using bees marked with coded tags such as

[4] or other automatic alignment approach. This was not

done in the present study to focus on the evaluation of the

intrinsic difficulty of the pollen recognition task using good

quality manually annotated data.

A total of 810 bees images were sampled by the anno-

tators, half of them labeled as Pollen bearing and the other

half as Not Pollen. This raw dataset was curated by a dif-

ferent person, who removed a total of 100 samples that had

misplaced annotations with misaligned samples (Figure 3).

A few slightly misaligned samples judged non ambiguous

by the curator remained (see for instance Figure 13). The

resulting dataset used in this work contains a total of 710

samples (354 Pollen and 346 Not Pollen).

To our knowledge, this dataset is the first public dataset

of this type and size, i.e. using natural light, good resolu-

tion imaging and manual annotation of the bee position and

orientation.

4. Classification approaches

Three different approaches have been considered in this

work: direct classification using baseline classifiers, shal-





5. Results

5.1. Experimental setup

The experiments were divided in three different ap-

proaches: baseline classifiers, shallow CNN and deep CNN.

Stratified split was used to create the training (70%) and

validation (30%) datasets. Accuracy was the metric consid-

ered in all the approaches to measure performance.

All the experiment were performed using Scikit-learn

[18], Scikit-image [23], OpenCV [1] and Keras [7]. They

were run on a 6-core Intel Xeon E5 Core i7 with 64 GB

RAM.

5.2. Baseline classifiers

The results of the classification task using KNN, Naive

Bayes and SVM are summarized in Table 1. SVM RBF

classifier with PCA reached the best accuracy using the

Gaussian feature map at 91.16%. The table shows the best

results according to the dimensions kept after PCA was per-

formed. In general PCA showed positive impact on per-

formance. In some cases accuracy improved up to 30%,

suggesting in these cases that the high dimensionality gen-

erated overfitting. Best results were obtained with less than

80 dimensions. The running time for each classifiers was

dominated by the PCA computation, therefore minor im-

pact on time was observed when running the classifiers with

different dimensions.

The lowest accuracy was obtained using the raw RGB

Image. Consistent improvement was observed when us-

ing the Color features combined with the Gaussian features.

This suggests: first, that the intuitive approach of perform-

ing pollen color detection actually enhances relevant infor-

mation; second, that spatial filtering also has a positive ef-

fect. The CNN architecture unifies these two aspects (color

selection and spatial filtering) in a form that is trainable,

which we discuss next.

5.3. Shallow models

5.3.1 Influence of the parameters

To choose the best hyper parameters for these architectures,

parameter exploration was performed. Figures 6, 7 and 8

summarize the effect of different choices of parameters on

the performance of the network in our particular problem.

The parameters tested were the number of kernels, size of

kernels, pooling size, step size and units of the summarizing

layer.

The results obtained show accuracies varying from 50%

to 96%. The choice of larger kernel sizes reveals a better

performance on both architectures tested. This suggests that

a larger kernel size is necessary on such shallow network to

cover enough of the pollen ball to be able to differentiate it

from other parts of the bee.

KNN NB SVM SVM rbf

Without PCA

Image (RGB) 77.92 77.18 77.31 50.66

Color 79.54 79.54 82.34 59.35

Gaussian 84.84 79.25 82.78 58.62

Training time 40-60s 5-10s 60-80s 140-160s

With PCA (Best dim)

RGB (80 dims) 80.73 77.11 77.45 73.04

Color (20 dims) 87.43 77.79 82.79 89.85

Gaussian (80 dims) 84.60 77.69 84.79 91.16

Training time 81s 81s 81s 81s

Table 1. Accuracy of baseline classifiers with and without PCA

preprocessing, using different feature map images as input. Only

best results are shown based on different dimensionality reduction.

For each approach the range of total computing time for the train-

ing is shown (including the PCA preprocessing when used).

Approach Acc Architecture Time per

(f,k,p,s,u) epoch (s)

1-Layer 96.4 (4,7,8,2,15) 10-25s

1-Layer + Color 95.2 (4,7,8,1,10) 45-60s

2-Layer 96.4 (8,1,8,1,15) 15-30s

2-Layer + Color 95.2 (4,7,8,1,15) 55-70s

VGG16 87.2 see [21] 1300-1400s

VGG19 90.2 see [21] 1650-1750s

ResNet50 61.7 see [9] 1700-1800s

Table 2. Results: Shallow Architectures Accuracy (f=filters,

k=kernel size, p=pooling size, s=pooling step/stride, and u=units)

The use of large pooling size combined with small step

sizes produced the best performance. More generally, larger

step sizes yielded very poorer, even coupled with larger

pooling sizes. The reduction of resolution linked the pool-

ing step size had a marked detrimental effect.

The number of kernels did not show a clear impact in

performance, in terms of the best performing networks, al-

though higher numbers (8 and 16) had better average accu-

racy. Having more diversity in the computed features there-

fore seemed to help, and did not lead to marked overfitting.

5.3.2 Comparison to baseline classifiers

For this evaluation, best models were selected for each shal-

low architecture. The parameters and performance are re-

ported in Table 2, as well as their ROC curve in Figure 9.

The 2-layer model showed similar performance than the

1-layer model, when using small step sizes, getting up to

96.4% in the best configuration. The 1-layer models for

both RGB Image and color feature map inputs reached the

same accuracy.

It is noteworthy that the Color feature map as input did







Figure 13. Selection of predicted results using the best 1-layer CNN. First row: most confident true positives. Second row: most confident

true negatives. Third row: all 10 misclassified samples. The title of each image in of the form PredictedScore/TrueClass, with 0=NoPollen,

1=Pollen and a cut-off at 0.5.

ment of the bees, or presences of perturbations in the field of

view. Such imprecisions in the detection of the bees are in-

evitable in the context of manually annotated training sets.

For practical application of the pollen recognition on the

field, it therefore appears important to integrate automatized

management of misalignments to the annotation and recog-

nition processes in order to reduce this source of errors.

Although deeper architectures may have the potential for

improved performance, they did not actually perform bet-

ter than shallower architectures on this dataset and involved

longer computations. Indeed, by involving a large number

of parameters, they typically require much larger datasets.

In this respect, we point out that the size of the dataset used

represents an upper limit to the investment that could be

requested from an end user in terms of fully supervised an-

notation to refine the models for a specific system on the

field.

In order to evaluate how to improve the performance and

applicability in the field, it is therefore an interesting ques-

tion for future work, how larger-scale datasets with good

quality annotation could be created by leveraging the clas-

sifiers proposed in this study and automatized collection and

validation of bee images.
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